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Overview and Big Picture of Lecture 2



Learning goals (what you’ll be able to do)

Goals for today

• Pick and configure an optimizer for small control problems (unconstrained &

constrained).

• Derive KKT conditions and form the SQP/QP subproblems for a nonlinear program.

• Explain the differences between penalty, augmented Lagrangian, and interior-point

methods.

Why?

In future classes, this will help us map classic control tasks (LQR/MPC/trajectory

optimization) to QPs/NLPs and choose a solver strategy.

3/63



Roadmap for today (2 hours)

1. Big picture and some notation (5 min)

2. Unconstrained optimization: Root-finding, Newton and globalization (30 min)

3. Equality constraints: KKT, Newton vs. Gauss–Newton (30 min)

4. Inequalities & KKT: complementarity (10 min)

5. Methods: penalty → ALM → interior-point (PDIP) (20 min)

6. Brief look at SQP for solving hard control problems (20 min)

4/63



Big picture: why optimization for control?

• Controller synthesis often reduces to solving a

sequence of optimization problems.

• MPC solves a QP/NLP online at each time

step; warm-start and sparsity are critical.

• Trajectory optimization (nonlinear robots)

uses NLP + collocation; needs robust

globalization.

• Learning-based control backpropagates

through optimizers (differentiable

programming).

Dynamics

xk+1 = f (xk , uk)

Online optimizer

(QP/NLP)

uk xk
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Notation I: derivatives & Jacobians

Scalar-valued function

f : Rn → R

Row-derivative (row gradient):

∂f

∂x
∈ R1×n

First-order model of f

f (x +∆x) ≈ f (x) +
∂f

∂x
∆x

∆x ∈ Rn,
∂f

∂x
∈ R1×n, ∆f ∈ R

Vector-valued function

g : Rm → Rn

Jacobian:

∂g

∂y
∈ Rn×m

First-order model of g

g(y +∆y) ≈ g(y) +
∂g

∂y
∆y

∆y ∈ Rm,
∂g

∂y
∈ Rn×m, ∆g ∈ Rn
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Notation II: gradient, Hessian & Taylor

Gradient (column form)

For f : Rn → R,

∇f (x) :=
(
∂f

∂x

)T

∈ Rn

Hessian

∇2f (x) :=
∂

∂x

(
∂f

∂x

)
=

∂2f

∂x2
∈ Rn×n

Shape check

∇f (x) ∈ Rn, ∇2f (x) ∈ Rn×n, ∆x ∈ Rn

∆xT∇2f (x)∆x ∈ R

Second-order Taylor

f (x+∆x) ≈ f (x)+∇f (x)T∆x+ 1
2 ∆xT∇2f (x)∆x
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Root-Finding



Root-Finding and Fixed Points (Big Picture)

• Root-finding: given f : Rn→Rn, find x⋆ with f (x⋆) = 0 (e.g., steady states,

nonlinear equations).

• Fixed point: x⋆ is a fixed point of g if g(x⋆) = x⋆ (discrete-time equilibrium).

• Bridge: pick g(x) = x − αf (x) (α > 0) so that

f (x⋆) = 0 ⇐⇒ g(x⋆) = x⋆.

• Mindset: start x0 and iterate xk+1 = g(xk) until nothing changes.
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When Does Fixed-Point Iteration Converge?

• Near x⋆, g behaves like its Jacobian Jg (x
⋆) (linearization).

• Contraction test: scalar: |g ′(x⋆)| < 1; vector: spectral radius ρ(Jg (x
⋆)) < 1.

• Smaller contraction ⇒ faster (linear) convergence; ≥ 1⇒ divergence/oscillations.

• Converges only from within the basin of attraction (good initial guess matters).
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Fixed-Point Iteration: Minimal Recipe

• Choose g (often g(x) = x − αf (x)) and an initial guess x0.

• Loop: xk+1 ← g(xk).

• Stop when residual ∥f (xk+1)∥ is small, or step ∥xk+1 − xk∥ is small, or max

iterations reached.

• Report both: residual and step size (helps diagnose false convergence).
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Tuning and Practical Tips

• Step size α: too small ⇒ slow; too large ⇒ divergence/oscillation. Start modest;

adjust cautiously.

• Damping: xk+1←(1− β)xk + βg(xk) with 0 < β ≤ 1 to stabilize.

• If stalled: try a better g (rescale/precondition f ) or a better initial guess.

• Optimization link: gradient descent is FPI on ∇F : g(x) = x − η∇F (x) solves
∇F (x⋆) = 0.

• When too slow: use (quasi-)Newton methods for faster local convergence (needs

derivatives/linear solves).
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Newton’s Method

TLDR: Instead of solving for f (x) = 0, solve a linear system from a linear

approximation of f (x).

Fit a linear approximation to f (x): f (x +∆x) ≈ f (x) + ∂f
∂x ∆x

Set the approximation to zero and solve for ∆x :

f (x) +
∂f

∂x
∆x = 0 ⇒ ∆x = −

(
∂f

∂x

)−1

f (x)

Apply the correction and iterate:

x ← x +∆x

Repeat until convergence.
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Example: Backward Euler

Last time: Implicit dynamics model (nonlinear function of current state and future state)

f (xn+1, xn, un) = 0

Implicit Euler: this time we have xn+1 on the right; i.e evaluate f at future time.

xn+1 = xn + hf (xn+1)

(Evaluate f at future time)

⇒ f (xn+1, xn, un) = xn+1 − xn − hf (xn+1) = 0

Solve root finding problem for xn+1

• Very fast convergence with Newton (quadratic) and can get machine precision.

• Most expensive part is solving a linear system O(n3)

• Can improve complexity by taking advantage of problem structure/sparsity. 14/63



Move to Julia Code

Quick Demo of Julia Notebook: part1 root finding.ipynb
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Minimization

min
x

f (x), f : Rn → R

If f is smooth, ∂f
∂x (x

∗) = 0 at a local minimum.

Hence, now we have a root-finding problem ∇f (x) = 0 ⇒ Apply Newton!
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Minimization

min
x

f (x), f : Rn → R

If f is smooth, ∂f
∂x (x

∗) = 0 at a local minimum.

Hence, now we have a root-finding problem ∇f (x) = 0 ⇒ Apply Newton!

∇f (x +∆x) ≈ ∇f (x) + ∂

∂x
(∇f (x))∆x = 0 ⇒ ∆x = −(∇2f (x))−1∇f (x)

x ← x +∆x

Repeat this step until convergence; Intuition to have about Newton:

• Fitting a quadratic approximation to f (x); Exactly minimize approximation 16/63



Move to Julia Code

Quick Demo of Julia Notebook: part1 minimization.ipynb
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Take-away Messages on Newton

Newton is a local root-finding method. Will converge to the closest fixed point to the

initial guess (min, max, saddle).

Sufficient Conditions

• ∇f = 0: “first-order necessary condition” for a minimum. Not a sufficient

condition.

• Let’s look at scalar case: ∆x = − 1
∇2f
∇f

where: negative corresponds to “descent”, ∇f corresponds to the gradient and ∇2f acts

as the “leading rate” / “step size”.
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Take-away Messages on Newton (cont’d)

∇2f > 0 ⇒ descent (minimization) ∇2f < 0 ⇒ ascent (maximization)

• In Rn, if ∇2f ⪰ 0 (positive definite) ⇒ descent

• If ∇2f > 0 everywhere ⇒ f (x) is strongly convex → Can always solve with Newton

• Usually not the case for hard/nonlinear problems
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Regularization: Ensuring Local Minimization

Practical solution to make sure we always minimize:

If H (H ← ∇2f ) not positive definite, we just make it so with regularization.

While H ̸⪰ 0:

H ← H + βI (β > 0 scalar hyperparameter)

Then do newton step as usual. I.e:

x ← x +∆x = x − H−1∇f

• also called “damped Newton” (shrinks steps)

• Guarantees descent

• Regularization makes sure we minimize, but what about over-shooting?
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Line Search: Mitigating overshooting in Newton

• Often ∆x step from Newton overshoots the minimum.

• To fix this, check f (x + α∆x) and “back track” until we get a “good” reduction.

• Many strategies: all differ in definition of good.

• A simple + effective one is Armijo Rule:

Start with α = 1 as our step length and have tolerance b as a hyper-parameter.

while f (x+α∆x) > f (x)+b α∇f (x)T∆x =⇒ α← c α (scalar 0 < c < 1, e.g. c = 1
2)

The intuition: α∇f (x)T∆x is the predicted change in f from a first-order Taylor expansion. Armijo

checks that the actual decrease in f matches this first-order prediction within tolerance b.
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Constrained Optimization



Equality-constrained minimization: geometry and conditions

Problem; minx∈Rn f (x) s.t. C (x) = 0,C : Rn → Rm.

Geometric picture. At an optimum on the manifold C (x) = 0, the negative gradient

must lie in the tangent space:

∇f (x⋆) ⊥ Tx⋆ = {p : JC (x
⋆)p = 0}.

Equivalently, the gradient is a linear combination of constraint normals:

∇f (x⋆) + JC (x
⋆)Tλ⋆ = 0, C (x⋆) = 0 (λ⋆ ∈ Rm).

Lagrangian.; L(x , λ) = f (x) + λTC (x).
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A nicer visual explanation/derivation of KKT conditions

Quick little whiteboard derivation
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Constrained Optimization



Equality constraints: picture first

Goal. Minimize f (x) while staying on the surface C (x) = 0.

Feasible set as a surface. Think of C (x) = 0 as a smooth surface embedded in Rn (a

manifold).

Move without breaking the constraint. Tangent directions are the

“along-the-surface” moves that keep C (x) unchanged to first order. Intuitively: tiny

steps that slide on the surface.

What must be true at the best point. At x⋆, there is no downhill direction that stays

on the surface. Equivalently, the usual gradient of f has no component along the surface.

Normals enter the story. If the gradient can’t point along the surface, it must point

through it—i.e., it aligns with a combination of the surface’s normal directions (one

normal per constraint).
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From the picture to KKT (equality case)

KKT conditions at a regular local minimum (equality only):

1) Feasibility: C (x⋆) = 0. (We’re on the surface.)

2) Stationarity: ∇f (x⋆) + JC (x
⋆)Tλ⋆ = 0. (The gradient is a linear combination of the

constraint normals.)

Lagrangian viewpoint. Define L(x , λ) = f (x) + λTC (x). At a solution, x⋆ is a

stationary point of L w.r.t. x (that’s the stationarity equation), while C (x⋆) = 0

enforces feasibility.

What the multipliers mean. The vector λ⋆ tells how strongly each constraint “pushes

back” at the optimum; it also measures sensitivity of the optimal value to small changes

in the constraints.
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enforces feasibility.

What the multipliers mean. The vector λ⋆ tells how strongly each constraint “pushes

back” at the optimum; it also measures sensitivity of the optimal value to small changes

in the constraints.
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KKT system for equalities (first-order necessary conditions)

KKT (FOC).

∇xL(x , λ) = ∇f (x) + JC (x)
Tλ = 0, ∇λL(x , λ) = C (x) = 0.

Solve by Newton on KKT: linearize both optimality and feasibility:

[
∇2f (x) +

∑m
i=1 λi ∇2Ci (x) JC (x)

T

JC (x) 0

][
∆x

∆λ

]
= −

[
∇f (x) + JC (x)

Tλ

C (x)

]
.

Notes. This is a symmetric saddle-point system; typical solves use block elimination

(Schur complement) or sparse factorizations.
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Move to Julia Code

Quick Demo of Julia Notebook: part2 eq constraints.ipynb
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Numerical practice: Newton on KKT

When it works best.

• Near a regular solution with JC (x
⋆) full row rank and positive-definite reduced

Hessian.

• With a globalization (line search on a merit function) and mild regularization for

robustness.

Common safeguards.

• Regularize the (1, 1) block to ensure a good search direction (e.g., add βI ).

• Merit/penalty line search to balance feasibility vs. optimality during updates.

• Scaling constraints to improve conditioning of the KKT system.

30/63



Numerical practice: Newton on KKT

When it works best.

• Near a regular solution with JC (x
⋆) full row rank and positive-definite reduced

Hessian.

• With a globalization (line search on a merit function) and mild regularization for

robustness.

Common safeguards.

• Regularize the (1, 1) block to ensure a good search direction (e.g., add βI ).

• Merit/penalty line search to balance feasibility vs. optimality during updates.

• Scaling constraints to improve conditioning of the KKT system.

30/63



Gauss–Newton vs. full Newton on KKT

Full Newton Hessian of the Lagrangian: ∇2
xxL(x , λ) = ∇2f (x) +

∑m
i=1 λi ∇2Ci (x)

Gauss–Newton approximation: drop the constraint-curvature term
∑m

i=1 λi ∇2Ci (x):

HGN(x) ≈ ∇2f (x).

Trade-offs (high level).

• Full Newton: fewer iterations near the solution, but each step is costlier and can be

less robust far from it.

• Gauss–Newton: cheaper per step and often more stable; may need more iterations

but wins in wall-clock on many problems.
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Inequality-constrained minimization and KKT

Problem. min f (x) s.t. c(x) ≥ 0, c : Rn → Rp.

KKT conditions (first-order).

Stationarity: ∇f (x)− Jc(x)
Tλ = 0,

Primal feasibility: c(x) ≥ 0,

Dual feasibility: λ ≥ 0,

Complementarity: λT c(x) = 0 (i.e., λici (x) = 0 ∀i).

Interpretation.

• Active constraints: ci (x) = 0⇒ λi ≥ 0 can be nonzero (acts like an equality).

• Inactive constraints: ci (x) > 0⇒ λi = 0 (no influence on optimality).
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Complementarity in plain English (and why Newton is tricky)

What λici (x) = 0 means.

• Tight constraint (ci = 0) ⇒ can press back (λi ≥ 0).

• Loose constraint (ci > 0) ⇒ no force (λi = 0).

Why naive Newton fails.

• Complementarity = nonsmooth + inequalities (λ ≥ 0, c(x) ≥ 0).

• Equality-style Newton can violate nonnegativity or bounce across boundary.

Two main strategies (preview).

• Active-set: guess actives ⇒ solve equality-constrained subproblem, update set.

• Barrier/PDIP/ALM: smooth or relax complementarity, damped Newton, drive relaxation → 0.
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Minimization w/ Inequality Constraints



Three families you should know (high level)

Goal: Handle inequalities c(x) ≥ 0 (and equalities) robustly and efficiently.

Families.

1. Penalty: embed violations in the objective; crank a parameter ρ ↑.
2. Augmented Lagrangian (ALM): maintain multipliers & a moderate penalty; solve

easier subproblems.

3. Interior-Point (PDIP): enforce c(x) > 0 via a barrier; follow the central path with

primal–dual Newton.

Rule of thumb. Penalty is simplest; ALM is a strong default for medium accuracy;

PDIP is the gold standard for convex QPs and very robust with Newton.
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Inequality-Constrained Minimization

Problem Setup:

min f (x) s.t. c(x) ≥ 0

KKT conditions:

∇f −
(
∂c(x)

∂x

)T

λ = 0 (stationarity)

c(x) ≥ 0 (primal feasibility) λ ≥ 0 (dual feasibility)

λ ◦ c(x) = λT c(x) = 0 (complementarity)

Unlike equality case, we can’t directly solve KKT conditions with Newton! Why?
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Lots of solution methods to use: Active Set Method

Active Set Method

• High level idea: Guess which inequalities are redundant at optimality and throw

them away.

• Switch inequality constraints on/off in outer-loop and solve equality-constrained

problem.

• Works well if you can guess active set well ( common in MPC where good

warm-starts are common).

• Has really bad worst-time complexity.

• Usually custom heuristics are used for specific problem classes/structure.
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Penalty Methods: Idea & Algorithm

Penalty Method: Replace constraints with cost terms that penalize violation!

min
x

f (x) + ρ
2

∥∥c−(x)∥∥2
2
, c−(x) := min(0, c(x)) (elementwise).

Algorithm sketch.

1. Start with a small ρ > 0; minimize the penalized unconstrained objective.

2. Increase ρ (e.g., ×10) and warm start from previous x .

3. Stop when c−(x) is small enough.
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Quadratic penalty: need large ρ for strong feasibility pressure

Pros. Dead simple; reuse unconstrained

machinery (Grad/Newton + line search).

Cons. Ill-conditioning as ρ→∞; struggles

to reach high accuracy; multipliers are

implicit.

Popular fix. Estimate λ (Augmented

Lagrangian / ADMM) to converge with

finite ρ.

Takeaway. The penalty outside the feasible

set (x < 0 here) is only quadratic, so to

make violations tiny you often must crank

ρ very large ⇒ poor conditioning.
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Augmented Lagrangian (ALM): fix penalty’s weaknesses

Core idea. Introduce multipliers λ so we can keep ρ moderate and still achieve

accuracy.

Lagrangian for equality case: Lρ(x , λ) = f (x) + λTC (x) + ρ
2∥C (x)∥22.

Outer loop.

1. xk+1 ≈ argminx Lρ(x , λk) (unconstrained solve).

2. λk+1 = λk + ρC (xk+1).

Inequalities (sketch). Apply to the hinge c−(x) and keep λ ≥ 0:

Lρ(x , λ) = f (x)− λT c(x) + ρ
2∥c

−(x)∥22, λk+1 = max
(
0, λk − ρ c(xk+1)

)
.

Why it works. Subproblems are better conditioned than pure penalty; λ estimates

improve the model; finite ρ can reach high accuracy.
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ALM in practice (optimization loop view)

Inner solver. Use (damped) Newton or quasi-Newton on Lρ(·, λk) with Armijo/Wolfe

line search.

Tuning.

• Keep ρ fixed or adapt slowly (increase if feasibility stalls).

• Scale constraints; monitor |C (x)| and stationarity.

When to pick ALM.

• Nonconvex NLPs where feasibility progress matters and you want robust

globalization.

• When medium accuracy is tolerable/fine, or as a precursor to a polished PDIP

phase on a convex QP.
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Interior-Point / Barrier Methods

TLDR: Replace inequalities with barrier function in objective:

min f (x), x ≥ 0 → min f (x)− ρ log(x)

• Gold standard for convex problems.

• Fast convergence with Newton and strong theoretical properties.

• Used in IPOPT.
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Barrier intuition issue: − log(x) blows up near the boundary

For an inequality like x ≥ 0, the log barrier − log(x) goes to ∞ as x → 0+, creating a hard wall

at the boundary (contrast with quadratic penalties). 43/63



Primal-Dual Interior Point Method

min f (x) s.t. x ≥ 0

→ min f (x)− ρ log(x)

∂f

∂x
− ρ

x
= 0

• This “primal” FON condition blows up as x → 0.

• We can fix this with the “primal-dual trick.”
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The Primal-Dual Trick for IPM

Introduce new variable λ = ρ
x ⇒ xλ = ρ.

∇f − λ = 0

xλ = ρ

• This can actually be viewed as a relaxed complementarity slackness from KKT!

• Converges to exact KKT solution as ρ→ 0.

• We lower ρ gradually as solver converges (from ρ ∼ 1 to ρ ∼ 10−6).

• Note: we still need to enforce x ≥ 0 and λ ≥ 0 (with line search).

We will use another approach from 2022 from a researcher at TRI that

developped an even cooler trick.
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Log-Domain Interior-Point Method
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Log-Domain Interior-Point Method

More general constraint case: min f (x) s.t. c(x) ≥ 0

Simplify by introducing a “slack variable”:

min
x ,s

f (x) s.t. c(x)− s = 0, s ≥ 0

→ min
x ,s

f (x)− ρ log(s) s.t. c(x)− s = 0

Write out Lagrangian: L(x , s, λ) = f (x)− ρ log(s)− λT (c(x)− s)
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Log-Domain Interior-Point Method

Apply F.O.N.C to Lagrangian from last slide:

∇xL = ∇f −
(
∂c

∂x

)T

λ = 0

∇sL =
ρ

s
+ λ = 0 ⇒ sλ = ρ

∇λL = s − c(x) = 0

This second equation has a really nice interpretation: relaxed complementarity slackness
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Log-Domain Interior-Point Method

Change of variables (elementwise):

ρ := s ◦ λ, σ := 1
2

(
log s − log λ

)
⇐⇒ s =

√
ρ ◦ eσ, λ =

√
ρ ◦ e−σ

Here ◦ is the Hadamard (elementwise) product; s, λ, ρ, σ ∈ Rm with s > 0, λ > 0. By construction

s ≥ 0, λ ≥ 0 and ρ = s ◦ λ (the relaxed complementarity) holds.

KKT (first-order) residuals with inequality c(x)− s = 0:

rx(x , σ) := ∇f (x)− J(x)Tλ(σ), rc(x , σ) := c(x)− s(σ) = 0,

where J(x) := ∂c
∂x (x), s(σ) =

√
ρ ◦ eσ, λ(σ) = √ρ ◦ e−σ.
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Log-Domain Interior-Point Method

(Gauss-)Newton step in (x , σ) for fixed ρ:[
H JTΛ

J −S

][
δx

δσ

]
= −

[
rx

rc

]
with S := diag(s), Λ := diag(λ).

Here H is your Hessian model w.r.t. x : H = ∇2f (x) (Gauss–Newton/curvature-drop), or

H = ∇2f (x)−
∑m

i=1 λi∇2ci (x) (full Newton). Note the simple sensitivities: ds = S dσ, dλ = −Λ dσ,

which produce the block entries −S and JTΛ.
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Log-Domain Interior-Point Method (easier notation)

To ensure s ≥ 0 and λ ≥ 0, introduce change of variables:

s =
√
ρeσ, λ =

√
ρe−σ

Now (relaxed) complementarity is always satisfied by construction!

Plug back into F.O.N.C

∇f −
(
∂c

∂x

)T

λ = 0 c(x)−√ρeσ = 0

We can solve these with (Gauss) Newton:

[
H
√
ρcT e−σ

c −√ρeσ

][
δx

δσ

]
=

[
−∇f + cTλ

−c(x) +√ρeσ

]
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Example: Quadratic Program

Super common problem to be solved in control applications: quadratic programs

min
x

1
2x

TQx + qT x , Q ⪰ 0

s.t.

Ax = b, Cx ≤ d

• Super useful in control (SQP)

• Can be solved very fast (∼ kHz).
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Move to Julia Code

Quick Demo of Julia Notebook: part3 ipm.ipynb

53/63



Penalty vs. ALM vs. PDIP: what changes?

• Feasibility handling:

• Penalty: encourages c(x) ≥ 0 via cost; feasibility only in the limit ρ ↑.
• ALM: balances optimality and feasibility via λ updates at finite ρ.

• PDIP: enforces strict interior c(x) > 0; drives siλi = ρ→ 0.

• Conditioning:

• Penalty gets ill-conditioned as ρ grows.

• ALM keeps conditioning reasonable.

• PDIP maintains well-scaled Newton systems near the path (with proper scaling).

• Accuracy: Penalty (low–med), ALM (high with finite ρ), PDIP (high; excellent for

convex).

• Per-iteration work: Penalty/ALM solve unconstrained-like subproblems; PDIP

solves structured KKT systems with slacks/duals.
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Sequential Quadratic Programming (SQP)



What is SQP?

Idea: Solve a nonlinear, constrained problem by repeatedly solving a quadratic program

(QP) built from local models.

• Linearize constraints; quadratic model of the Lagrangian/objective.

• Each iteration: solve a QP to get a step d , update x ← x + αd .

• Strength: strong local convergence (often superlinear) with good Hessian info.
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Target Problem (NLP)

min
x∈Rn

f (x) s.t. g(x) = 0, h(x) ≤ 0

• f : Rn→R, g : Rn→Rm (equalities), h : Rn→Rp (inequalities).

• KKT recap (at candidate optimum x⋆):

∃ λ ∈ Rm, µ ∈ Rp
≥0 : ∇f (x

⋆) +∇g(x⋆)Tλ+∇h(x⋆)Tµ = 0,

g(x⋆) = 0, h(x⋆) ≤ 0, µ ≥ 0, µ⊙ h(x⋆) = 0.
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From NLP to a QP (Local Model)

At iterate xk with multipliers (λk , µk):

Quadratic model of the Lagrangian

mk(d) = ⟨∇f (xk), d⟩+ 1
2d

TBkd

with Bk ≈ ∇2
xxL(xk , λk , µk).

Linearized constraints

g(xk) +∇g(xk) d = 0, h(xk) +∇h(xk) d ≤ 0.
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The SQP Subproblem (QP)

min
d∈Rn

∇f (xk)Td + 1
2d

TBkd

s.t. ∇g(xk) d + g(xk) = 0,

∇h(xk) d + h(xk) ≤ 0.

• Solve QP ⇒ step dk and updated multipliers (λk+1, µk+1).

• Update xk+1 = xk + αkdk (line search or trust-region).
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Algorithm Sketch (SQP)

1. Start with x0, multipliers (λ0, µ0), and B0 ≻ 0.

2. Build QP at xk with Bk , linearized constraints.

3. Solve QP ⇒ get dk , (λk+1, µk+1).

4. Globalize: line search on merit or use filter/TR to choose αk .

5. Update xk+1 = xk + αkdk , update Bk+1 (e.g., BFGS).
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Toy Example (Local Models)

Problem:

min
x∈R2

1
2 ∥x∥

2 s.t. g(x) = x21 + x2 − 1 = 0, h(x) = x2 − 0.2 ≤ 0.

At xk , build QP with

∇f (xk) = xk , Bk = I , ∇g(xk) =
[
2xk,1 1

]
, ∇h(xk) =

[
0 1

]
.

Solve for dk , then xk+1 = xk + αkdk .
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Globalization: Making SQP Robust

SQP is an important method, and there are many issues to be considered to obtain an

efficient and reliable implementation:

• Efficient solution of the linear systems at each Newton Iteration (Matrix block

structure can be exploited.

• Quasi-Newton approximations to the Hessian.

• Trust region, line search, etc. to improve robustnes (i.e TR: restrict ∥d∥ to
maintain model validity.)

• Treatment of constraints (equality and inequality) during the iterative process.

• Selection of good starting guess for λ.

62/63



Final Takeaways on SQP

When SQP vs. Interior-Point?

• SQP: strong local convergence; warm-start friendly; natural for NMPC.

• IPM: very robust for large, strictly feasible problems; good for dense inequality sets.

• In practice: both are valuable—choose to match problem structure and runtime

needs.

Takeaways of SQP

• SQP = Newton-like method using a sequence of structured QPs.

• Globalization (merit/filter/TR) makes it reliable from poor starts.

• Excellent fit for control (NMPC/trajectory optimization) due to sparsity and warm

starts.
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