Lecture 2: Numerical Optimization for Control

(grad/SQP/QP; ALM vs. interior-point vs. penalty)
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ISYE 8803: Special Topics on Optimal Control and Learning



Overview and Big Picture of Lecture 2



Learning goals (what you’ll be able to do)

Goals for today

e Pick and configure an optimizer for small control problems (unconstrained &
constrained).

e Derive KKT conditions and form the SQP/QP subproblems for a nonlinear program.
e Explain the differences between penalty, augmented Lagrangian, and interior-point
methods.
Why?
In future classes, this will help us map classic control tasks (LQR/MPC /trajectory
optimization) to QPs/NLPs and choose a solver strategy.
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Roadmap for today (2 hours)

1. Big picture and some notation (5 min)
2. Unconstrained optimization: Root-finding, Newton and globalization (30 min)
3. Equality constraints: KKT, Newton vs. Gauss—Newton (30 min)
4. Inequalities & KKT: complementarity (10 min)
5. Methods: penalty — ALM — interior-point (PDIP) (20 min)
6. Brief look at SQP for solving hard control problems (20 min)
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Big picture: why optimization for control?

e Controller synthesis often reduces to solving a
sequence of optimization problems.

Dynamics |

Xk+1 = f(Xk, uk)

TUk

(QP/NLP)

Online optimizer |

Xk
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Big picture: why optimization for control?

e Controller synthesis often reduces to solving a Dynamics

sequence of optimization problems.
q P P Xk+1 = f(Xk, uk)

e MPC solves a QP/NLP online at each time

step; warm-start and sparsity are critical. I i Xk
e Trajectory optimization (nonlinear robots)

uses NLP + collocation; needs robust Online optimizer

globalization. (QP/NLP)

e Learning-based control backpropagates
through optimizers (differentiable
programming).
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Notation I: derivatives & Jacobians

Scalar-valued function
f:R" - R
Row-derivative (row gradient):
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Notation I: derivatives & Jacobians

Scalar-valued function
f:R" =R

Row-derivative (row gradient):

of
“ Rlxn
Ox <
First-order model of
of

f(x+ Ax) = f(x) + an

f
Ax € R", of eR>*"  AfeR
Ox

Vector-valued function
g:R” — R"

Jacobian:

g

6 Rnxm
dy

First-order model of g

0
gy + Ay) ~ g(y) + 5 Ay

AycRrm, 98 cgrxm

Ag e R”
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Notation Il: gradient, Hessian & Taylor

Gradient (column form)
For f : R" = R,

Vi(x):= (gi)T eR”
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Notation Il: gradient, Hessian & Taylor

Gradient (column form) Shape check
For f : R" = R,
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Notation Il: gradient, Hessian & Taylor

Gradient (column form) Shape check
For f : R" = R,

9F\T Vf(x) €R", V3f(x) cR™", AxcR"
Vi(x):= (3)() e R"”

AX"V3f(x)Ax € R

Hessian Second-order Taylor

o (of 0°f
V2f(x) = P (8X> = o ER™"  f(x+Ax) = f(x)+VF(x)" Ax+3 Ax" V?f(x) Ax
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Root-Finding



Root-Finding and Fixed Points (Big Picture)

Root-finding: given f : R" —R", find x* with f(x*) = 0 (e.g., steady states,
nonlinear equations).

Fixed point: x* is a fixed point of g if g(x*) = x* (discrete-time equilibrium).

Bridge: pick g(x) = x — af(x) (o > 0) so that

*

f(x)=0 < g(x*) =x".

Mindset: start xp and iterate xx41 = g(xx) until nothing changes.
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When Does Fixed-Point Iteration Converge?

e Near x*, g behaves like its Jacobian Jg(x*) (linearization).

Contraction test: scalar: |g'(x*)| < 1; vector: spectral radius p(Jg(x*)) < 1.

Smaller contraction = faster (linear) convergence; > 1 = divergence/oscillations.

Converges only from within the basin of attraction (good initial guess matters).
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Fixed-Point Iteration: Minimal Recipe

Choose g (often g(x) = x — af(x)) and an initial guess x.

o Loop:  xki1 < g(xk)-

Stop when residual ||f(xk+1)|| is small, or step ||xk+1 — x| is small, or max
iterations reached.

Report both: residual and step size (helps diagnose false convergence).
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Tuning and Practical Tips

Step size a: too small = slow; too large = divergence/oscillation. Start modest;
adjust cautiously.

Damping: xiy14 (1 — B)xk + Bg(xk) with 0 < 8 < 1 to stabilize.

If stalled: try a better g (rescale/precondition f) or a better initial guess.

e Optimization link: gradient descent is FPl on VF: g(x) = x — nVF(x) solves
VF(x*)=0.
e When too slow: use (quasi-)Newton methods for faster local convergence (needs

derivatives/linear solves).
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Newton’s Method

TLDR: Instead of solving for f(x) = 0, solve a linear system from a linear
approximation of f(x).
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Newton’s Method

TLDR: Instead of solving for f(x) = 0, solve a linear system from a linear
approximation of f(x).

Fit a linear approximation to f(x): f(x + Ax) ~ f(x) + 2 Ax

Set the approximation to zero and solve for Ax:
of
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Newton’s Method

TLDR: Instead of solving for f(x) = 0, solve a linear system from a linear
approximation of f(x).

Fit a linear approximation to f(x): f(x + Ax) ~ f(x) + 2 Ax

Set the approximation to zero and solve for Ax:

of of\
f(X)+&AX:0 = AX:(@X) f(x)

Apply the correction and iterate:
X ¢ x+ Ax

Repeat until convergence.
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Example: Backward Euler

Last time: Implicit dynamics model (nonlinear function of current state and future state)
f(Xnt+1,Xn, un) =0
Implicit Euler: this time we have x,,1 on the right; i.e evaluate f at future time.

Xp+1 = Xp + hf(Xn-l-l)

(Evaluate f at future time)

= f(Xnt+1, Xn, Un) = Xn+1 — Xn — hf(Xp41) =0
Solve root finding problem for x41
e Very fast convergence with Newton (quadratic) and can get machine precision.

e Most expensive part is solving a linear system O(n%)
e Can improve complexity by taking advantage of problem structure/sparsity. 14/63



Move to Julia Code

Quick Demo of Julia Notebook: partl_root_finding.ipynb
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Minimization

minf(x), f:R"—>R

If f is smooth, %(X*) =0 at a local minimum.
Hence, now we have a root-finding problem Vf(x) =0 = Apply Newton!
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Minimization

minf(x), f:R"—>R

If f is smooth, %(X*) =0 at a local minimum.
Hence, now we have a root-finding problem Vf(x) = 0 = Apply Newton!

Vf(x+ Ax) = VFf(x) + aaX(Vf(x))Ax =0 = Ax=—(V3(x)VF(x)

X +— X + Ax

Repeat this step until convergence; Intuition to have about Newton:

e Fitting a quadratic approximation to f(x); Exactly minimize approximation 16/63



Move to Julia Code

Quick Demo of Julia Notebook: partl_minimization.ipynb
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Take-away Messages on Newton

Newton is a local root-finding method. Will converge to the closest fixed point to the

initial guess (min, max, saddle).

Sufficient Conditions

e Vi =0: “first-order necessary condition” for a minimum. Not a sufficient
condition.
e Let's look at scalar case: Ax = —%Vf
where: negative corresponds to “descent”, Vf corresponds to the gradient and V2f acts

as the “leading rate” / “step size”.
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Take-away Messages on Newton (cont’d)

V2f >0 = descent (minimization) V2f <0 = ascent (maximization)

e In R", if V2f = 0 (positive definite) = descent
e If V2f > 0 everywhere = f(x) is strongly convex — Can always solve with Newton

e Usually not the case for hard/nonlinear problems

19/63



Regularization: Ensuring Local Minimization

Practical solution to make sure we always minimize:
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Regularization: Ensuring Local Minimization

Practical solution to make sure we always minimize:

If H (H < V2f) not positive definite, we just make it so with regularization.

While H # 0:
H <« H -+ 3l (B > 0 scalar hyperparameter)
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Regularization: Ensuring Local Minimization

Practical solution to make sure we always minimize:

If H (H < V2f) not positive definite, we just make it so with regularization.

While H # 0:
H <« H -+ 3l (B > 0 scalar hyperparameter)

Then do newton step as usual. l.e:

X4 x4+ Ax=x— HIVF

e also called “damped Newton” (shrinks steps)
e Guarantees descent

e Regularization makes sure we minimize, but what about over-shooting? /
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Line Search: Mitigating overshooting in Newton

e Often Ax step from Newton overshoots the minimum.
e To fix this, check f(x + a/Ax) and “back track” until we get a “good” reduction.
e Many strategies: all differ in definition of good.
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Line Search: Mitigating overshooting in Newton

e Often Ax step from Newton overshoots the minimum.
e To fix this, check f(x + a/Ax) and “back track” until we get a “good” reduction.
e Many strategies: all differ in definition of good.

e A simple + effective one is Armijo Rule:

Start with o = 1 as our step length and have tolerance b as a hyper-parameter.

while f(x+alx) > f(x)+baVF(x)TAx = a+ ca (scalar0<c<1, eg c=13)

The intuition: a Vf(x)" Ax is the predicted change in f from a first-order Taylor expansion. Armijo

checks that the actual decrease in f matches this first-order prediction within tolerance b.
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Constrained Optimization



Equality-constrained minimization: geometry and conditions

Problem; minycg» f(x) st. C(x)=0,C:R" — R™.

Geometric picture. At an optimum on the manifold C(x) = 0, the negative gradient
must lie in the tangent space:

Vi(x*) L T ={p: Jc(x*)p = 0}.
Equivalently, the gradient is a linear combination of constraint normals:
VF(x*) + Jc(x)"A\* =0, C(x*)=0 (\eRM).

Lagrangian.; L(x,\) = f(x) + A" C(x).
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A nicer visual explanation/derivation of KKT conditions

Quick little whiteboard derivation
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Constrained Optimization



Equality constraints: picture first

Goal. Minimize f(x) while staying on the surface C(x) = 0.
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Equality constraints: picture first

Goal. Minimize f(x) while staying on the surface C(x) = 0.

Feasible set as a surface. Think of C(x) = 0 as a smooth surface embedded in R” (a
manifold).

Move without breaking the constraint. Tangent directions are the
“along-the-surface” moves that keep C(x) unchanged to first order. Intuitively: tiny
steps that slide on the surface.

What must be true at the best point. At x*, there is no downhill direction that stays
on the surface. Equivalently, the usual gradient of f has no component along the surface.

Normals enter the story. If the gradient can't point along the surface, it must point
through it—i.e., it aligns with a combination of the surface’s normal directions (one

normal per constraint).
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From the picture to KKT (equality case)

KKT conditions at a regular local minimum (equality only):

1) Feasibility: C(x*) =0. (We're on the surface.)
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From the picture to KKT (equality case)

KKT conditions at a regular local minimum (equality only):

1) Feasibility: C(x*) =0. (We're on the surface.)

2) Stationarity: V£ (x*) + Jc(x*)"A\* = 0. (The gradient is a linear combination of the
constraint normals.)

Lagrangian viewpoint. Define L(x,\) = f(x) + AT C(x). At a solution, x* is a
stationary point of L w.r.t. x (that's the stationarity equation), while C(x*) =0
enforces feasibility.

What the multipliers mean. The vector \* tells how strongly each constraint “pushes
back” at the optimum; it also measures sensitivity of the optimal value to small changes
in the constraints.
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KKT system for equalities (first-order necessary conditions)

KKT (FOC).
Vil(x,)) = VF(x) + Jc(x)"TA =0,  ViL(x,\) = C(x)=0.
Solve by Newton on KKT: linearize both optimality and feasibility:

sz(X) + 27;1 A\ V2 Gi(x) JC(X)T
Je(x) 0

Ax
AN

Vf(X) + Jc(X)T)\
C(x)

Notes. This is a symmetric saddle-point system; typical solves use block elimination
(Schur complement) or sparse factorizations.
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Move to Julia Code

Quick Demo of Julia Notebook: part2_eq_constraints.ipynb
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Numerical practice: Newton on KKT

When it works best.

o Near a regular solution with Jc(x*) full row rank and positive-definite reduced
Hessian.

e With a globalization (line search on a merit function) and mild regularization for
robustness.

30/63



Numerical practice: Newton on KKT

When it works best.

o Near a regular solution with Jc(x*) full row rank and positive-definite reduced
Hessian.

e With a globalization (line search on a merit function) and mild regularization for
robustness.

Common safeguards.

e Regularize the (1,1) block to ensure a good search direction (e.g., add /).
e Merit/penalty line search to balance feasibility vs. optimality during updates.

e Scaling constraints to improve conditioning of the KKT system.
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Gauss—Newton vs. full Newton on KKT

Full Newton Hessian of the Lagrangian: V2 L(x,)\) = V2f(x) + .7, \; V2Gi(x)
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Gauss—Newton vs. full Newton on KKT
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Gauss—Newton vs. full Newton on KKT

Full Newton Hessian of the Lagrangian: V2 L(x,)\) = V2f(x) + .7, \; V2Gi(x)
Gauss—Newton approximation: drop the constraint-curvature term Y. \; V2C;(x):

Hen(x) = V2f(x).

Trade-offs (high level).

e Full Newton: fewer iterations near the solution, but each step is costlier and can be
less robust far from it.

e Gauss—Newton: cheaper per step and often more stable; may need more iterations
but wins in wall-clock on many problems.
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Inequality-constrained minimization and KKT

Problem. min f(x) s.t. c(x) >0, c:R" — RP.

KKT conditions (first-order).

Stationarity: VF(x) = Je(x)TA =

Primal feasibility: ¢(x) > 0,

Dual feasibility: A>0

Complementarity: A'c(x) =0 (i.e., \jci(x) =0 Vi).
Interpretation.

e Active constraints: ¢j(x) =0 = A; > 0 can be nonzero (acts like an equality).

e Inactive constraints: ¢j(x) > 0 = A\; = 0 (no influence on optimality).
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Complementarity in plain English (and why Newton is tricky)

What \ici(x) = 0 means.

e Tight constraint (¢; = 0) = can press back (\; > 0).

e Loose constraint (¢; > 0) = no force (\j = 0).
Why naive Newton fails.

e Complementarity = nonsmooth + inequalities (A > 0, ¢(x) > 0).

e Equality-style Newton can violate nonnegativity or bounce across boundary.

Two main strategies (preview).

e Active-set: guess actives = solve equality-constrained subproblem, update set.

e Barrier/PDIP/ALM: smooth or relax complementarity, damped Newton, drive relaxation — 0.
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Minimization w/ Inequality Constraints



Three families you should know (high level)

Goal: Handle inequalities c¢(x) > 0 (and equalities) robustly and efficiently.

Families.

1. Penalty: embed violations in the objective; crank a parameter p 1.

2. Augmented Lagrangian (ALM): maintain multipliers & a moderate penalty; solve
easier subproblems.

3. Interior-Point (PDIP): enforce c(x) > 0 via a barrier; follow the central path with
primal-dual Newton.

Rule of thumb. Penalty is simplest; ALM is a strong default for medium accuracy;
PDIP is the gold standard for convex QPs and very robust with Newton.
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Inequality-Constrained Minimization

Problem Setup:
min f(x) s.t. ¢(x) >0
KKT conditions:

-
Vf — (8;(;)> A =0 (stationarity)
c(x) >0 (primal feasibility) A >0 (dual feasibility)

Aoc(x)=A"¢(x) =0 (complementarity)

Unlike equality case, we can’t directly solve KKT conditions with Newton! Why?
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Lots of solution methods to use: Active Set Method

Active Set Method

e High level idea: Guess which inequalities are redundant at optimality and throw

them away.

e Switch inequality constraints on/off in outer-loop and solve equality-constrained
problem.

e Works well if you can guess active set well ( common in MPC where good
warm-starts are common).

e Has really bad worst-time complexity.

e Usually custom heuristics are used for specific problem classes/structure.
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Penalty Methods: Idea & Algorithm

Penalty Method: Replace constraints with cost terms that penalize violation!

2

mXin f(x) + chf(x)‘Z,

¢ (x) := min(0, c(x)) (elementwise).

Algorithm sketch.

1. Start with a small p > 0; minimize the penalized unconstrained objective.
2. Increase p (e.g., x10) and warm start from previous x.

3. Stop when ¢~ (x) is small enough.
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Quadratic penalty: need large p for strong feasibility pressure

Pros. Dead Slmple; reuse unconstrained Quadratic penalty for inequality constraint vs. p

machinery (Grad/Newton + line search). 2500 { i — o=
Cons. lll-conditioning as p — oo; struggles | — rtho=100
to reach high accuracy; multipliers are Y 2001 i e
implicit. . — o=
Popular fix. Estimate A\ (Augmented 3 !
Lagrangian / ADMM) to converge with ‘E‘;moof i
finite p. g !

500
Takeaway. The penalty outside the feasible
set (x < 0 here) is only quadratic, so to S i i ; ; ‘ ‘
make violations tiny you often must crank T e sy gy 0T

p very large = poor conditioning.
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Augmented Lagrangian (ALM): fix penalty’s weaknesses

Core idea. Introduce multipliers A so we can keep p moderate and still achieve

accuracy.
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Augmented Lagrangian (ALM): fix penalty’s weaknesses

Core idea. Introduce multipliers A so we can keep p moderate and still achieve
accuracy.

Lagrangian for equality case: L£,(x,)\) = f(x) + A C(x) + 4||C(x)|)3.
Outer loop.

1. x**1 ~ argminy £,(x, A¥) (unconstrained solve).
2. AL = 2k p C(xkTh).

Inequalities (sketch). Apply to the hinge ¢~ (x) and keep A > O:
Lp(x,X) = F(x) = N c(x) + §llc™(x)[3, AT = max(0,* = pc(x*11)).
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Augmented Lagrangian (ALM): fix penalty’s weaknesses

Core idea. Introduce multipliers A so we can keep p moderate and still achieve
accuracy.

Lagrangian for equality case: £,(x,\) = f(x) + A C(x) + glCc(x)|3-
Outer loop.

1. x**1 ~ argminy £,(x, A¥) (unconstrained solve).
2. AL = Nk p C(xKH).
Inequalities (sketch). Apply to the hinge ¢~ (x) and keep A > 0:
Ly(x, ) = f(x) — M e(x) + §||c*(x)H§, A — ma><(07 N — pc(x”l)).

Why it works. Subproblems are better conditioned than pure penalty; A\ estimates

improve the model; finite p can reach high accuracy. 40/63



ALM in practice (optimization loop view)

Inner solver. Use (damped) Newton or quasi-Newton on £,(-, \K) with Armijo/Wolfe
line search.
Tuning.

e Keep p fixed or adapt slowly (increase if feasibility stalls).

e Scale constraints; monitor |C(x)| and stationarity.

When to pick ALM.

e Nonconvex NLPs where feasibility progress matters and you want robust
globalization.
e When medium accuracy is tolerable/fine, or as a precursor to a polished PDIP

phase on a convex QP.
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Interior-Point / Barrier Methods

TLDR: Replace inequalities with barrier function in objective:

minf(x), x>0 — minf(x)— plog(x)

e Gold standard for convex problems.
e Fast convergence with Newton and strong theoretical properties.

e Used in IPOPT.

42/63



Barrier intu

ion issue: — log(x) blows up near the boundary

Log barrier: -log(x) vs x (blows up as x » 07)

Hog(x)

For an inequality like x > 0, the log barrier — log(x) goes to oo as x — 0T, creating a hard wall

at the boundary (contrast with quadratic penalties). 43/63



Primal-Dual Interior Point Method

minf(x) st. x>0

— min f(x) — plog(x)

ofr p
ax x 0

e This “primal” FON condition blows up as x — 0.

e We can fix this with the “primal-dual trick.”
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The Primal-Dual Trick for IPM

Introduce new variable A = 2 = x\ = p.

Vf—-A=0
XA =p

This can actually be viewed as a relaxed complementarity slackness from KKT!
e Converges to exact KKT solution as p — 0.
e We lower p gradually as solver converges (from p ~ 1 to p ~ 107°).

o Note: we still need to enforce x > 0 and A > 0 (with line search).

We will use another approach from 2022 from a researcher at TRI that
developped an even cooler trick.
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Log-Domain Interior-Point Method

Log-domain interior-point methods for convex quadratic
programming

Frank Permenter

December 6, 2022

Abstract

Applying an interior-point method to the central-path conditions is a widely used approach
for solving quadratic programs. Reformulating these conditions in the log-domain is a natural
variation on this approach that to our knowledge is previously unstudied. In this paper, we
analyze log-domain interior-point methods and prove their polynomial-time convergence. We
also prove that they are approximated by classical barrier methods in a precise sense and provide
simple computational experiments illustrating their superior performance.
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Log-Domain Interior-Point Method

More general constraint case: min f(x) s.t. ¢(x) >0

Simplify by introducing a “slack variable”:

min f(x) s.t. ¢(x)—s=0,s>0

X,S

— n)r(nsn f(x) —plog(s) s.t. c(x)—s=0

)

Write out Lagrangian: L(x,s,\) = f(x) — plog(s) — AT (c(x) — s)
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Log-Domain Interior-Point Method

Apply F.O.N.C to Lagrangian from last slide:

oc\ "
ViL=Vf — Ix A=0

X

Val=s—c(x)=0
This second equation has a really nice interpretation: relaxed complementarity slackness
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Log-Domain Interior-Point Method

Change of variables (elementwise):

pi=S0M\, U::%(Iogs—logx\) — s=.poe’, A=,/poe?

Here o is the Hadamard (elementwise) product; s, A, p,o € R™ with s > 0, A > 0. By construction

s >0, A >0 and p=so\ (the relaxed complementarity) holds.
KKT (first-order) residuals with inequality c(x) — s = 0:

r(x,0) == VF(x) — J(x)" \(o), re(x,0) :==c(x) —s(o) =0,
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Log-Domain Interior-Point Method

(Gauss-)Newton step in (x, o) for fixed p:

H JTA
} _5] [g;] =— [i] with S := diag(s), A := diag()).

Here H is your Hessian model w.r.t. x: H = V?f(x) (Gauss—Newton/curvature-drop), or
H = V2f(x) — >, \iV2ci(x) (full Newton). Note the simple sensitivities: ds = S do, d\ = —Ado,

which produce the block entries —S and JTA.
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Log-Domain Interior-Point Method (easier notation)

To ensure s > 0 and )\ > 0, introduce change of variables:
s=./pe’?, A= ./pe”?
Now (relaxed) complementarity is always satisfied by construction!

Plug back into F.O.N.C

Vf — oc T)\—O (x) — =0
o = c(x) — /pe’ =

We can solve these with (Gauss) Newton:

oo

H \/,BcTe"] [(sx] B [ — Y7 4@ ]

c —./pe’ | —c(x) + e’
2 (x)+/p 163



Example: Quadratic Program

Super common problem to be solved in control applications: quadratic programs
mXin %XTQX + qTx, Q>0
s.t.
Ax=b, Cx<d

e Super useful in control (SQP)
e Can be solved very fast (~ kHz).
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Move to Julia Code

Quick Demo of Julia Notebook: part3_ipm.ipynb
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Penalty vs. ALM vs. PDIP: what changes?

e Feasibility handling:
e Penalty: encourages c(x) > 0 via cost; feasibility only in the limit p 1.
e ALM: balances optimality and feasibility via \ updates at finite p.
e PDIP: enforces strict interior c(x) > 0; drives s;\; = p — 0.
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Penalty vs. ALM vs. PDIP: what changes?

e Feasibility handling:

e Penalty: encourages c(x) > 0 via cost; feasibility only in the limit p 1.
e ALM: balances optimality and feasibility via \ updates at finite p.
e PDIP: enforces strict interior c(x) > 0; drives s;\; = p — 0.

e Conditioning:

e Penalty gets ill-conditioned as p grows.
e ALM keeps conditioning reasonable.

e PDIP maintains well-scaled Newton systems near the path (with proper scaling).

e Accuracy: Penalty (low—-med), ALM (high with finite p), PDIP (high; excellent for
convex).

e Per-iteration work: Penalty/ALM solve unconstrained-like subproblems; PDIP
solves structured KKT systems with slacks/duals.
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Sequential Quadratic Programming (SQP)



What is SQP?

Idea: Solve a nonlinear, constrained problem by repeatedly solving a quadratic program
(QP) built from local models.

e Linearize constraints; quadratic model of the Lagrangian/objective.
e Each iteration: solve a QP to get a step d, update x < x + ad.

e Strength: strong local convergence (often superlinear) with good Hessian info.
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Target Problem (NLP)

m]ilg f(x) st. g(x)=0, h(x)<O0
x€R"

o f:R">R, g: R"R™ (equalities), h: R”—RP (inequalities).
e KKT recap (at candidate optimum x*):
IAER™, peRy: VF(x*)+ Ve(x*)TA+ Vh(x*)Tp =0,

g(x*)=0, h(x)<0, p>0, puoh(x*)=0.
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From NLP to a QP (Local Model)

At iterate xx with multipliers (g, 1k):

Quadratic model of the Lagrangian
mi(d) = (Vf(x), d) + 2d" Bid

with By =~ Vixﬁ(xk, Ak, Mk)-

Linearized constraints

g(xx) + Vg(xk)d =0, h(xk) + Vh(xx)d < 0.
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The SQP Subproblem (QP)

i f(xx) d+3d"B
min Vf(xx)'d+5d" Bid

s.t. Vg(xk)d+g(xk) =0,
Vh(Xk) d—+ h(Xk) <0.

e Solve QP = step dx and updated multipliers (Akt1, ftk+1)-

e Update xx11 = xx + axdk (line search or trust-region).
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Algorithm Sketch (SQP)

Start with xp, multipliers (Ao, o), and By > 0.
Build QP at xx with By, linearized constraints.

Solve QP = get dy, ()\k+1,uk+1).

Globalize: line search on merit or use filter/ TR to choose a.

&> W =

Update xx+1 = xx + axdk, update Byy1 (e.g., BFGS).
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Toy Example (Local Models)

Problem:

>£2]i1£2 i Ix|? st g(x)=x24+x—1=0, h(x)=x —02<0.
At xi, build QP with

V() =xe, Br=1, Vg(x)= [2xk71 1}, Vh(xi) = [o 1}.

Solve for dy, then Xk+1 = Xk + Qydg.
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Globalization: Making SQP Robust

SQP is an important method, and there are many issues to be considered to obtain an
efficient and reliable implementation:

e Efficient solution of the linear systems at each Newton lteration (Matrix block
structure can be exploited.

e Quasi-Newton approximations to the Hessian.

e Trust region, line search, etc. to improve robustnes (i.e TR: restrict ||d|| to
maintain model validity.)

e Treatment of constraints (equality and inequality) during the iterative process.

e Selection of good starting guess for \.
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Final Takeaways on SQP

When SQP vs. Interior-Point?

e SQP: strong local convergence; warm-start friendly; natural for NMPC.
o IPM: very robust for large, strictly feasible problems; good for dense inequality sets.
e In practice: both are valuable—choose to match problem structure and runtime

needs.

Takeaways of SQP

e SQP = Newton-like method using a sequence of structured QPs.
e Globalization (merit/filter/ TR) makes it reliable from poor starts.
e Excellent fit for control (NMPC/trajectory optimization) due to sparsity and warm

starts.
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